Journal of Chromatography, 206 (1981) 463–474 Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM. 13,483

HOCHLEISTUNGS-GASCHROMATOGRAPHIE AN FLÜSSIGKRISTALL-GLASKAPILLAREN

I. TRENNUNG VON ISOMEREN KOHLENWASSERSTOFFEN AN NEMATI-SCHEN MESOPHASEN*

LADISLAV SOJÁK*

Chemisches Institut, Comenius Universität, Mlynská dolina CH-2, 816 50 Bratislava (Tschechoslowakei)

GÜNTER KRAUS

Martin-Luther-Universität Halle-Wittenberg, Sektion Chemie, 4020 Halle/Saale (D.D.R.) IVAN OSTROVSKÝ und EVA KRÁĽOVIČOVÁ

Chemisches Institut, Comenius Universität, Mlynská dolina CH-2, 816 50 Bratislava (Tschechoslowakei)

und

JÁN KRUPČÍK

Slowakische Technische Hochschule, Chemisch-Technologische Fakultät, Lehrstuhl für analytische Chemie, 880 37 Bratislava (Tschechoslowakei)

SUMMARY

High-resolution gas chromatography with liquid crystal glass capillaries. I. Separation of hydrocarbon isomers on nematic mesophases

High-performance glass capillary columns with 4-*n*-pentyl-acetophenone (O-4*n*-octyloxybenzoyloxime) were applied for separations of isomeric alkylbenzenes and *n*-alkenes in the nematic liquid-crystalline also in the crystalline and isotropic range. From the calculated retention indices and their dependence on temperature structureretention correlations were discussed.

A specific selectivity of the liquid crystals for isomeric *n*-alkenes was found and also their influence on other effects (*e.g.* hindrance of propyl effect, anomaly order of retention of *trans*-6-*trans*-5-dodecenes, alternation of the relative retention with C-number). Different orientation in the mesophase shows differences in selectivity.

The applied liquid crystal capillaries permit better separation of isomers in shorter time.

^{*} Presented at the 6th International Symposium "Advances and Application of Chromatography in Industry", Bratislava, September 16–19, 1980.

EINLEITUNG

Die Trennung von höhermolekularen Isomerengemischen ist ein schwieriges Problem der Gaschromatographie. Mit wachsender Kohlenstoffzahl im Molekül wächst die Zahl der möglichen und verringert sich der Unterschied zwischen benachbarten Isomeren. Zur Trennung einiger Isomerenpaare von C_{15} - C_{18} *n*-Alkenen benötigt man z.B. Trennleistungen von 10⁶-10⁷ effektiven Böden mit polarer oder unpolarer stationärer Phase¹. Solche Trennsysteme sind praktisch schwer zu realisieren, daher ist das Auffinden von selektiven Phasen erforderlich.

In einer vorangehenden Arbeit² wurde gefunden, dass unter Ausnutzung der Eigenschaften von Carbowax 20M im Schmelzbereich die Selektivität der Trennung von isomeren Alkenen verbessert werden kann. Mehr Möglichkeiten in dieser Richtung bieten jedoch flüssig-kristalline Phasen aufgrund ihrer unterschiedlichen Strukturen und Temperaturbereiche.

Flüssigkristalle wurden bereits erfolgreich zur Trennung von isomeren Kohlenwasserstoffen eingesetzt³. So gelang die Trennung von *m*-*p*-Xylen bereits 1963 an nematischem p,p'-Azoxyphenetol⁴ und wurde in weiteren Arbeiten beschrieben. Ferner konnten u.a. auch die *m*-*p*-Isomere von Diethylbenzen⁵ und Divinylbenzen⁶ sowie isomere polycyklische Kohlenwasserstoffe⁷ getrennt werden.

Für die genannten Trennungen wurden vorwiegend gepackte Säulen verwendet. Mit zunehmender Isomerenzahl ist es jedoch erforderlich, die Selektivität der Flüssigkristalle mit hoher Trennleistung zu koppeln. Glaskapillaren mit nematischer Phase wurden erstmals von uns zur Trennung der m-p-Isomere des Xylens eingesetzt⁸. Nach der Literatur erscheinen gewöhnlich nematische Flüssigkristalle am besten zur Isomerentrennung geeignet. Sie besitzen eine weitgehende Parallelordnung der Moleküle, die in der Längsrichtung verschiebbar sind. In der vorliegenden Arbeit wurde daher auch zunächst der nematische Mesophasenbereich untersucht. Ziel unserer Arbeiten ist jedoch der Vergleich der Selektivität des nematischen, smektischen und cholesterinischen Bereichs.

EXPERIMENTELLER TEIL

Als Modellgemische verwendeten wir eine Mischung aller 40 isomeren *n*-Alkene C_{10} - C_{13} zusammen mit den korrespondierenden *n*-Alkanen sowie der C_7 - C_{11} *n*-Alkylbenzene einschliesslich der isomeren Xylene.

Die Messungen wurden mit einem Gaschromatographen Carlo Erba GI 452 mit Flammenionisationsdetektor durchgeführt, als Trägergas diente Wasserstoff. Die Trennsäule war eine Glaskapillare von 154 m \times 0.25 mm I.D., zusammengesetzt aus zwei Teilstücken von 91 und 63 m, die mit Hilfe eines Teflon-Schrumpfschlauches verbunden waren. Sie bestand aus weichem Na-Ca-Glas (Typ Unihost, Kavalier, Teplice, Tschechoslowakei) und wurde geätzt mit Chlorwasserstof und mit Trimethylchlorsilan desaktiviert⁹. Die Belegung erfolgte nach der dynamischen Methode mit einem Quecksilberpfropfen. Als stationäre Phase diente 4-*n*-Pentylacetophenon-(O-4-*n*-octyloxybenzoyloxim) (OBO) mit einem nematischen (N) Bereich von 48-96°C und einem monotrop-smektischen (sm G) Bereich unterhalb 40°C¹⁰:

Die Parameter der hergestellten Kapillaren sind in Tabelle I beschrieben.

TABELLE I

PARAMETER DER VERWENDETEN KAPILLAREN, BELEGT MIT OBO UND GEMESSEN FÜR n-DODEKAN BEI 70°C

Säule	1	2	3 (1 + 2)
Länge (m)	63	91	154
Innendurchmesser (mm)	0.25	0.25	0.25
Säulenvordruck H ₂ (MPa)	0.11	0.15	0.30
Lineare Geschwindigkeit H2 (cm sec-1)	32	33	34
Kapazitätsverhältnis k	4.12	4.25	4.60
Theoretische Bodenzahl n	200,000	150,000	270,000
Effektive Bodenzahl N	130,000	100,000	180,000

Die Messungen wurden in allen Mesophasenbereichen sowie im kristallinen (K) und isotropen (I) Bereich (32–110°C) bei einem Säulenvordruck von 0.05–0.3 MPa H₂ durchgeführt. Aus den gemessenen Retentionsdaten wurden die Indices mit einer mittleren Standardabweichung von 0.3 berechnet. Der Retentionsindex für *p*-Xylen bei 50°C, berechnet aus Messungen an vier Kapillaren aus Glas und Metall mit unterschiedlicher Filmdicke der stationären Phase (k-Werte zwischen 0.47 und 1.66), betrug 955 \pm 2.

ERGEBNISSE UND DISKUSSION

Der verwendete Oximester wurde bereits zusammen mit einigen Gliedern der homologen Reihe in Bezug auf seine Löseeigenschaften gaschromatographisch untersucht¹¹. Die thermisch stabile Verbindung zeigte dabei interessante Unterschiede innerhalb des nematischen Bereichs. Ihr Einsatz zur Lösung von Trennproblemen in Hochleistungskapillaren erlaubt Vergleiche mit den bereits berechneten thermodynamischen Parametern.

Trennung von Alkylbenzenen

An üblichen stationären Phasen wird p-Xylen vor m-Xylen eluiert und ihre relative Retention steigt mit wachsender Polarität der stationären Phase. Für Squalan bei 80°C ist der Unterschied der Retentionsindices 2.0, für das hochpolare 1,2,3-Triscyanoethoxypropan beträgt er 4.0. Eine umgeherhrte Reihenfolge bekommt man an flüssig-kristallinen Phasen aufgrund ihrer spezifischen Selektivität für p-Xylen.

Die bereits in zahlreichen Arbeiten beschriebene Trennung der m-p-Xylene an Flüssigkristallen erschien uns als ein schneller Test zur Einschätzung der Selektivität der Kapillaren geeignet. In Fig. 1 und Tabelle II ist die Abhängigkeit der Retention von der Säulentemperatur für isomere C₈-Alkylbenzene (d.h. Indexdifferenz δI zwischen

Fig. 1. Trennung von isomeren C₈-Alkylbenzenen an OBO in Abhängigkeit von der Säulentemperatur (Heizung). EB = Ethylbenzen, o-, m-, p-X = o-, m-, p-Xylen.

TABELLE II

ABHÄNGIGKEIT DER δI -WERTE VON DER SÄULENTEMPERATUR FÜR p-m-XYLENE UND o-XYLEN-ETHYLBENZEN AN OBO H = Heizung, K = Kühlung.

	Temperatur (°C)											
	40 H	45 H	45 K	50 H	65 K	75 H	80 H	85 H	90 H	100 H	100 K	110 H
δΙ _{ρ.m} δΙ _{ο,EB}	5.9 46.6	6.5 47.4	7.9 47.6	7.4 47.5	7.1 48.9	5.5 49.2	5.7 49.7	3.8 51.1	3.2 49.2	0 49.7	0 48.4	0 48.8

o-Xylen und Ethylbenzen und zwischen m- und p-Xylen) dargestellt. Dabei ist zu sehen, dass sich das Retentionsinterval mit der Temperatur mehr für p-m-Xylen ändert, womit der Einfluss der nematischen Struktur auf die Trennung bestätigt wird. Die in vorangehenden Messungen an OBO gefundenen zwei nematischen Bereiche mit unterschiedlichem Löseverhalten konnten ebenfalls durch die vorliegenden Ergebnisse bestätigt werden¹¹.

Die Temperaturabhängigkeit der Retentionsindices von isomeren C₈-Alkylbenzenen ist in Fig. 2 dargestellt. In Abhängigkeit vom Temperaturverlauf (Heizung oder Kühlung) zeigen sich deutliche Unterschiede im Retentionsverhalten. Die korrespondierenden Chromatogramme für die C₈-Alkylbenzene bei 45°C sind in Fig. 3 zu sehen. Bei Einstellung der Säulentemperatur durch Abkühlung unter den Schmelzpunkt ist die Ausbildung der monotrop-smektischen Modifikation zu erwarten, was auch das Chromatogram zu bestätigen scheint. Ob es sich dabei jedoch um eine auch mögliche Unterkühlung der Mesophase handelt, bleibt weiteren Messungen vorbehalten. Dabei zeigt der monotrop-smektische Bereich (unterkühlte Mesophase) eine noch bessere Selektivität als die nematische Phase bei 50°C. Dagegen ist eine noch vorlie-

Fig. 2. Temperaturabhängigkeit der Retentionsindices von C_8 -Alkylbenzenen an OBO. Symbole siehe Fig. 1. ———, Heizung, ———, Kühlung.

Fig. 3. Trennung von isomeren C₈-Alkylbenzenen und Retentionsindices an OBO bei 45°C Säulentemperatur; A = Heizung (kristallin), B = Kühlung. Symbole siehe Fig. 1.

gende Kristallstruktur bei Einstellung der Säulentemperatur durch Heizung an den kleineren Retentionszeiten und Indices sowie an dem auf Adsorption deutendes Tailing der Peaks zu erkennen.

Die spezifische Selektivität der nematischen Mesophase kann für schnelle und vollständige Trennungen verwendet werden. An Säule 1 (Tabelle I) konnte z.B. eine Trennung der C₅-Alkylbenzene bei 50°C in 6 min erreicht werden (Fig. 4). Obwohl die relative Retention a für p-m-Xylen nur 1.076 beträgt, kann man mit dieser Säule eine Volltrennung erreichen.

Fig. 4. Trennung von isomeren C₈-Alkylbenzenen an 63 m Glaskapillare mit OBO (Säule 1) bei 50°C, Säulenvordruck 0.15 MPa H₂ und $\bar{u} = 42$ cm/sec.

Trennung von isomeren n-Alkenen C_{10} - C_{13}

Die Trennung von Isomeren der höheren *n*-Alkene gehört zu den schwierigsten Anforderungen an die Kohlenwasserstoffanalytik und ist nur durch Hochleistungs-Gaschromatographie zu lösen. Bisher wurden Kapillaren bis zu 300 m Länge verwendet und die Analysenzeiten betrugen dabei mehrere Stunden^{12,13}.

In Figs. 5-8 sind die Chromatogramme der Trennungen von *n*-Decenen, *n*-Undecenen, *n*-Dodecenen und *n*-Tridecenen sowie den korrespondierenden *n*-Alkanen zu sehen, die wir mit der beschriebenen 154-m Kapillare (Säule 3) erhalten haben. Die Identifizierung der Peaks erfolgte auf der Basis von Struktur-Retentions-Korrelationen¹². Eine Trennung und Charakterisierung der geometrischen Isomeren von *n*-Alkenen bei Anwendung von Kapillaren ist auf der Basis der unterschiedlichen Temperaturabhängigkeit der Retention von *cis-trans*-Isomeren (d*I*/d*T* für *cis*-Isomere ist grösser als für korrespondierende *trans*-Isomere) möglich.

Die Chromatogramme zeigen, dass alle isomeren *n*-Alkene sowie die korrespondierenden *n*-Alkane getrennt werden. Ausnahme ist lediglich das Isomerenpaar *trans*-4- und *trans*-5-Decen. Die aus den Retentionsdaten berechneten Indices sind in Tabelle III angegeben, die Temperaturabhängigkeit für isomere *n*-Tridecene ist in Fig. 9 zu sehen. Ein Vergleich mit den Literaturdaten zeigt, dass Flüssigkristallkapillaren für die Trennung der *n*-Alkene sehr gut geeignet sind. Sie ermöglichen bessere Trennungen in kürzerer Analysenzeit aufgrund der spezifischen Selektivität der flüssigkristallinen Phase.

Fig. 5. Trennung von isomeren *n*-Decenen an OBO bei 65°C, 0.3 MPa H₂ und $\tilde{u} = 34$ cm/sec. Fig. 6. Trennung von isomeren *n*-Undecenen an OBO bei 74°C.

Fig. 7. Trennung von isomeren n-Dodecenen an OBO bei 74°C.

Fig. 8. Trennung von isomeren n-Tridecenen an OBO bei 74°C.

TABELLE III

RETENTIONSINDICES DER *n*-DECENE, *n*-UNDECENE, *n*-DODECENE UND *n*-TRI-DECENE, GEMESSEN AN OBO BEI 45, 65, 80 UND 100°C UND DIE d*I*/d*T*-WERTE FÜR DEN BEREICH 74-90°C

n-Aikene	I45	I ₆₅ 080	I ^{0B0}	I ^{0B0}	dI ^{oso} /dT
cis-5-Decene	984.3	985.5	989.6	996.2	0.26
cis-4-Decene	985.6	988.9	992.3	996.2	0.27
trans-5-Decene	987.3	989.5	992.3	996.2	0.24
trans-4-Decene	987.3	989 <i>.</i> 5	992.3	996.2	0.24
cis-3-Decene	989.4	993.5	996.5	1002.6	0.23
trans-3-Decene	991.3	994.3	996.5	1000.0	0.23
1-Decene	995.7	1000.0	1002.0	1004.4	0.23
trans-2-Decene	1008.6	1013.2	1015.1	1017.5	0.06
cis-2-Decene	1008.8	1014.8	1018.3	1023.7	0.17
cis-5-Undecene	1079.7	1078.8	1083.3	1091.7	0.29
cis-4-Undecene	1082.0	1082.2	1086.6	1094.5	0.33
trans-5-Undecene	1085.9	1086.8	1088.1	1094.5	0.27
trans-4-Undecene	1085.9	1088.0	1089.5	1094.5	0.19
cis-3-Undecene	1089.0	1091.0	1094.9	1101.7	0.33
trans-3-Undecene	1092.5	1094.4	1096.0	1100.0	0.19
1-Undecene.	1093.9	1100.0	1102.4	1104.9	0.13
trans-2-Undecene	1108.3	1112.9	1114.8	1116.9	0.14
cis-2-Undecene	1108.3	1114.6	1117.5	1122.6	0.23
cis-6-Dodecene	1174.2	1173.4	1177.5	1188.3	0.34
cis-5-Dodecene	1175.9	1175.9	1179.9	1189.4	0.31
cis-4-Dodecene	1180.0	1180.5	1184.3	1193.3	0.33
trans-5-Dodecene	1182.6	1184.6	1187.1	1193.3	0.19
trans-6-Dodecene	1182.6	1185.2	1186.9	1193.3	0.24
trans-4-Dodecene	1185.8	1188.5	1190.1	1194.7	0.20
cis-3-Dodecene	1188.1	1191.4	1193.8	1201.2	0.29
trans-3-Dodecene	1191.3	1194.6	1195.7	1200.0	0.19
1-Dodecene	1195.0	1201.8	1202.6	1205.8	0.13
trans-2-Dodecene	1208.2	1214.5	1214.7	1217.5	0.13
cis-2-Dodecene	1208.2	1215.1	1217.0	1223.2	0.25
cis-6-Tridecene	1271.2	1268.5	1272.9	1284.1	0.36
cis-5-Tridecene	1274.3	1272.0	1276.4	1287.1	0.39
cis-4-Tridecene	1280.0	1277.8	1283.0	1292.2	0.28
trans-6-Tridecene	1281.3	1280.2	1283.7	1290.4	0.21
trans-5-Tridecene	1283.2	1282.1	1285.3	1292.2	0.21
trans-4-Tridecene	1286.4	1285.4	1287.9	1293.7	0.17
cis-3-Tridecene	1289.3	1288.5	1292.4	1300.1	0.28
trans-3-Tridecene	1293.5	1292.8	1295.1	1300.0	0.16
1-Tridecene	1298.0	1301.0	1302.6	1306.0	0.14
trans-2-Tridecene	1311.1	1312.8	1314.4	1316.8	0.14
cis-2-Tridecene	1311.1	1313.7	1316.6	1323.1	0.26

In Tabelle IV sind die Unterschiede in den Retentionsindices für benachbarte Positions-Isomere an der untersuchten Mesophase in Vergleich mit Carbowax 20M zusammengestellt. Dabei zeigt sich eindeutig, dass die δI -Werte im Flüssigkristall am grössten sind.

Zur Erklärung kann man davon ausgehen, dass an üblichen Phasen Positions-Isomere in Übereinstimmung mit der Verschiebung der Doppelbindung zum Ende des

Fig. 9. Temperaturabhāngigkeit der Retentionsindices der isomeren *n*-Tridecene an OBO; c = cis-, t = trans-Isomere.

TABELLE IV

 δI -WERTE FÜR BENACHBARTE POSITIONSISOMERE AN CARBOWAX 20M UND OBO BEI 50°C

n-Tridecene	Carbo	OBO		
	fest	flüssig	-	
cis-6-, cis-5-	2.0	2.0	4.0	
cis-5-, cis-4-	3.7	4.2	4.4	
cis-4-, cis-3-	6.6	7.1	11.6	
cis-3-, cis-2-	13.6	16.9	26.2	
trans-6-, trans-5-	1.5	1.6	2.1	
trans-5-, trans-4-	1.0	1.0	4.0	
trans-4-, trans-3-	5.2	6.3	7.9	
trans-3-, trans-2-	9.4	11.6	20.3	

Moleküls eluiert werden. Nematische Flüssigkristalle halten Verbindungen mit grossem Verhältnis der Länge zur Breite des Moleküls stärker zurück und die δI -Werte vergrössern sich. Daraus folgt, dass die Selektivität für positions-isomere *n*-Alkene an OBO mit der Verschiebung der Doppelbindung zum Ende des Moleküls wächst. Damit wird auch bestätigt, dass *trans*-4-Decen von *trans*-5-Decen an der Mesophase nicht getrennt wird (Fig. 5). An üblichen stationären Phasen eluieren diese Isomere infolge des Propyl-Effekts¹⁴ in anomaler Reihenfolge, d.h. *trans*-4- vor *trans*-5-Decen.

Ein weiterer interessanter Effekt ist die unerwartete Elutionsfolge von *trans*-6nach *trans*-5-Dodecen (Fig. 7 und 11). Ihre Identifizierung konnte daher nur auf der Basis der Zusammensetzung der Substratmischung erfolgen. Dieser Effekt konnte auch in smektischen Mesophasen bestätigt werden und wird in weiteren Arbeiten diskutiert.

Eine Folge der hohen Selektivität ist auch die Möglichkeit zur Trennung der Isomeren bei niedrigen Temperaturen und damit die bessere Ausnutzung der kleinen Dampfdruckunterschiede der Substrate als Anteil zur Trennwirksamkeit.

Weiter wurde gefunden, dass die relative Retention für cis-2- und trans-2-Alkene mit der C-Zahl alterniert (Figs. 10 und 11), was mit bereits berechneten thermodynamischen Daten für diese Mesophase korreliert¹¹.

Fig. 10. Trennung von cis-2-, trans-2-C10-C13-n-Alkenen an OBO bei 70°C. Symbole siehe Fig. 9.

SCHLUSSFOLGERUNGEN

Die untersuchten Flüssigkristallkapillaren mit hoher Trennleistung zeigten, dass sich das Retentionsinterval für C₈-Alkylbenzene mit der Temperatur mehr für p-m-Xylen ändert, womit der Einfluss der nematischen Struktur auf die Trennung bestätigt wird.

Unterschiedliche Trennungen bzw. Selektivität werden durch unterschiedliche Orientierungen im Mesophasenbereich bewirkt.

Fig. 11. Homomorphiefaktoren H₆₅^{OBO} von C₁₀-C₁₃-n-Alkenen an OBO bei 65°C. Symbole siehe Fig.9.

Die Trennung von isomeren höheren *n*-Alkenen ist bei wesentlich kürzeren Analysenzeiten besser als an üblichen stationären Phasen. Dieser Effekt erklärt sich in der Weise, dass sich die Selektivität an Flüssigkristallen vergrössert mit der Verschiebung der Doppelbindung von der Mitte zum Ende des Substratmoleküls, d.h. in der gleichen Richtung wie die Reihenfolge der Retention der Positions-Isomere.

DANK

Die Autoren danken Herrn Dr. W. Weissflog (Halle) für die Überlassung der stationären Phase.

ZUSAMMENFASSUNG

Hochleistungsglaskapillaren mit 4-n-Pentyl-acetophenon-(O-4-n-octyloxybenzoyloxim) als stationäre Phase wurden im nematisch-flüssig-kristallinen sowie im kristallinen und isotropen Bereich zur Trennung von isomeren Alkylbenzenen und *n*-Alkenen eingesetzt. Aus berechneten Retentionsindices und ihrer Temperaturabhängigkeit konnten Struktur-Retentions-Korrelationen diskutiert werden. Eine spezifische Selektivität der Flüssigkristalle für isomere *n*-Alkene konnte nachgewiesen werden sowie ihr Einfluss auf weitere Effekte (Behinderung des Propyl-Effekts, anomale Reihenfolge der Retention von *trans*-6-, *trans*-5-Dodecenen, Alternation der relativen Retention mit der C-Zahl). Unterschiedliche Orientierungen im Mesophasenbereich zeigten unterschiedliche Selektivität.

Die verwendeten Flüssigkristallkapillaren ermöglichten bessere Isomerentrennungen in kürzeren Analysenzeiten.

LITERATUR

- 1 L. Soják, J. Krupčík und J. Janák, J. Chromatogr., 195 (1980) 43.
- 2 L. Soják und J. Krupčík, J. Chromatogr., 190 (1980) 283.
- 3 H. Kelker, Advances in Liquid Crystals, Vol. 3, Academic Press, New York, London, 1978, S. 237.
- 4 H. Kelker, Z. Anal. Chem., 198 (1963) 254.
- 5 Z. Witkiewicz, Z. Suprynowicz und R. Dabroswki, J. Chromatogr., 175 (1979) 37.
- 6 W. L. Zielinski Jr., D. H. Freeman, D. E. Martire und L. C. Chow, Anal. Chem., 42 (1970) 176.
- 7 W. L. Zielinski Jr., Industrial Research Development, Feb. 1980, S. 178.
- 8 G. Kraus, K. H. Seifert und H. Schubert, Z. Chem., 11 (1971) 429.
- 9 L. Soják, J. Krupčík und J. Janák, J. Chromatogr., 191 (1980) 199.
- 10 W. Weissflog, H. Schubert, S. König, D. Demus und L. Vogel, J. Prakt. Chem., 319 (1977) 507.
- 11 G. Kraus, K. Seifert und H. Schubert, J. Chromatogr., 100 (1974) 101.
- 12 L. Soják, J. Hrivňák, P. Majer und J. Janák, Anal. Chem., 45 (1973) 293.
- 13 W. Meltzow und B. Fell, Erdöl und Kohle, 25 (1972) 311.
- 14 L. Soják, P. Zahradník, J. Leška und J. Janák, J. Chromatogr., 174 (1979) 97.